
On Measuring RPKI Relying Parties
John Kristoff
jkrist3@uic.edu

University of Illinois at
Chicago
USA

Randy Bush
randy@psg.com
IIJ and Arrcus
Japan and USA

Chris Kanich
ckanich@uic.edu

University of Illinois at
Chicago
USA

George Michaelson
ggm@apnic.net

APNIC
Australia

Amreesh Phokeer
amreesh@afrinic.net

AFRINIC
Mauritius

Thomas C. Schmidt
t.schmidt@haw-
hamburg.de

HAW Hamburg
Germany

Matthias Wählisch
m.waehlisch@fu-berlin.de
Freie Universität Berlin

Germany

ABSTRACT
In this paper, we introduce a framework to observe RPKI relying
parties (i.e., those that fetch RPKI data from the distributed repos-
itory) and present insights into this ecosystem for the first time.
Our longitudinal study of data gathered from three RPKI certifi-
cation authorities (AFRINIC, APNIC, and our own CA) identifies
different deployment models of relying parties and (surprisingly)
prevalent inconsistent fetching behavior that affects Internet rout-
ing robustness. Our results reveal nearly 90% of relying parties are
unable to connect to delegated publication points under certain
conditions, which leads to erroneous invalidation of IP prefixes and
likely widespread loss of network reachability.

CCS CONCEPTS
• Networks → Public Internet; Routing protocols; Security pro-
tocols; Network measurement; • Security and privacy → Se-
curity protocols.

KEYWORDS
Internet, Routing, Security
ACM Reference Format:
John Kristoff, Randy Bush, Chris Kanich, George Michaelson, Amreesh
Phokeer, Thomas C. Schmidt, and Matthias Wählisch. 2020. On Measuring
RPKI Relying Parties. In ACM Internet Measurement Conference (IMC ’20),
October 27–29, 2020, Virtual Event, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3419394.3423622

1 INTRODUCTION
The Resource Public Key Infrastructure (RPKI) [20] is an architec-
ture to support improved security for the BGP [30] routing system
on the Internet. For the first time, cryptographically secured objects
such as a chain of X.509 certificates in the RPKI, can be used to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’20, October 27–29, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8138-3/20/10. . . $15.00
https://doi.org/10.1145/3419394.3423622

 rpki-rtr protocol

 RRDP / rsync

Cert

ROA

Trust
Anchor

Cert

AFRINIC PP

RPKI Repository

RPKI objects

certificates,
ROAs

cert:
authorizes
ownership of IP
prefixes + ASNs

ROA:
authorizes ASNs
to originate
IP prefixes

Hosted RPKI:
RIRs run CA

Cert

ROA

Trust
Anchor

Cert

RIPE PP

Cert

ROA

Cert

NIR/LIR/ISP PP

Cert Cert Cert

Delegated RPKI:
run your own CA

Pu
bl
ic
at
io
n

C
ac
hi
ng

En
fo
rc
em

en
t

Relying Party (RP) Fetching &
Crypto Validation

BGP RouterBGP Router

PP:
publication point
serves objects

Figure 1: The RPKI ecosystem

authenticate BGP route announcements to defend against problems
such as prefix re-origination route leaks [32].

Despite initial skepticism [15] the deployment of RPKI is un-
derway. Several large transit providers (e.g., AT&T [23], NTT [35],
and Telia [4, 22]), Internet Exchange Points (e.g., AMS-IX [1]), mid
and small size ISPs (e.g., Fiber Telecom [12]) as well as content
providers (e.g., Cloudflare [21]) evaluate and reject invalid routes
in production based on RPKI information. RPKI as currently de-
ployed protects against BGP misconfiguration and basic attacks
of illegitimate origination of IP address space. Future RPKI-based
mechanisms such as ASPA [2, 3] and BGPsec [13] will provide
stronger protection against accidents and malicious attacks. For a
validation system, to consider protected Internet resources (i.e., IP
prefixes and AS numbers) completely, it will be critical to fetch all
RPKI objects.
RPKI in a nutshell. Much like the web-based PKI and certificate
system, RPKI objects are created and signed by a Certification Au-
thority (CA). All RPKI objects (e.g., route origin authorization (ROA))
are disseminated as files in a distributed repository of publication
point (PP) servers. Analogous to a DNS authoritative server andDNS

https://doi.org/10.1145/3419394.3423622
https://doi.org/10.1145/3419394.3423622

IMC ’20, October 27–29, 2020, Virtual Event, USA Kristoff, et al.

resolvers, a PP makes RPKI data available to relying parties (RPs). In
contrast to DNS resolvers, which fetch data on demand and have a
partial view of the DNS, these RPs must periodically fetch all au-
thoritative data and maintain a complete view. RPs use rsync [34]
or RRDP [5] for data retrieval, then cryptographically validate re-
ceived RPKI objects, cache the results, and relay data such as valid
prefix-to-origin AS bindings to BGP routers for use in the route
decision-making process (see Figure 1).

In the RPKI, the trust anchors (TAs) are each of the five indepen-
dent Regional Internet Registries (RIRs): ARIN, APNIC, AFRINIC,
LACNIC, and RIPE. The most common deployment model is the
hosted RPKI, in which these RIRs maintain the RPKI infrastructure
and offer RPKI as a service to their members. To allow for a fully
distributed system, each owner of Internet resources may opt to
run its own CA by deploying the delegated RPKI model. Ultimately,
each RP validates all signed objects in the RPKI hierarchy, starting
from each TA and following certificate paths to obtain a complete,
crypto-verified view of the RPKI hierarchy.

As RPKI is increasingly used to validate and enforce Internet
route announcements, the connection between PPs and the RPs
is considered to be critical Internet infrastructure. Understanding
how these entities interact with each other, and whether all objects
propagate to a sufficiently large portion of the Internet, will be
instrumental to determining whether the RPKI works as intended
and can be relied upon.

In this paper, we present an investigation of the current opera-
tion, completeness, and consistency of RPs and RP software, in the
RPKI as it is currently designed and deployed.
What might go wrong? There are several reasons that lead to an
incomplete or outdated view of RPKI data. (i) A RP does not reach
a publication point server; (ii) a RP fetches data infrequently; (iii) a
RP does not follow the technical specifications.
State of the art. Current research that analyzed the deployment
of RPKI focuses on two aspects. (i) The creation of ROA objects
and the validation outcome of BGP announcements [17, 36, 37].
(ii) The use of RPKI-based route filtering [14, 31, 33]. It is an open
research topic how relying parties behave and whether they have
a complete view of the RPKI. Having a better understanding of
the relying parties in the wild also provides insight into which
networks potentially consider RPKI for origin validation.
Contributions. In this work, we present a first look at RP ac-
cess behavior and RPKI synchronization robustness. We make the
following contributions:

(1) We introduce a reproducible measurement framework for
evaluating RPKI RP synchronization behavior, timeliness,
and completeness.

(2) We characterize weaknesses in RPKI data propagation to RPs.
(3) We survey RPKI relying party software, access protocols,

and synchronization patterns with publication points.
(4) We identify a fundamental mismatch in RP software behavior

and and protocol design expectations through a series of
controlled publication point server experiments.

2 MEASUREMENT FRAMEWORK
In this section, we introduce our measurement framework to better
understand the deployment and operation of RPKI relying parties.

Table 1: Default refresh intervals for common RP software.

RP software RRDP rsync

FORT Validator [28] 1 hour 1 hour
rpki.net rcynic [18] 1 hour 1 hour
OpenBSD rpki-client [29] not implemented 1 hour
OctoRPKI [10] 20 minutes 20 minutes
Routinator [19] 10 minutes 10 minutes
RIPE NCC Validator 3 [26] 2 minutes 10 minutes
RIPE NCC Validator 2 [25] 1 minute 10 minutes

Our framework is designed to allow for full reproducibility. It im-
plements active as well as passive measurement methods based on
the following three core building blocks: (i) controlled CAs and
publication points, (ii) controlled relying parties, and (iii) controlled
RPKI objects (i.e., ROA Beacons).

2.1 Building Blocks
Controlled CA and PP server. Global RP behavior in the wild is
best observed by PP server operators. To be independent of third
party data, we leverage the hierarchical, distributed, and delegated
design of the RPKI CA publication system. We operate a child, two
grandchildren CAs and three PPs under one of the RIR CAs. This
provides us with the necessary vertical view from RP, through the
trust anchor, and towards multiple levels of delegated CAs. To im-
plement a horizontal view, we plan to deploy delegated repositories
under additional CAs in the future.

Our PPs provide the ability to evaluate RRDP and rsync access
methods as well as IPv4 and IPv6 independently in order to study a
variety of RP deployment scenarios and behavioral anomalies. We
record time stamps, IP addresses, originating ASNs, and reverse
DNS records of the accessing RPs. When RRDP is used, we capture
the HTTP User-Agent to help the underlying software.
Controlled RP Cache Server. We operate multiple topologically
distributed RPs, each running different software implementations
fetching data recursively from all public trust anchors. These van-
tage points provide insights into the availability and performance
between any RP and PP pair.Wewill publicly document IP addresses
and configuration of fetching parameters to serve as ground truth
not only for us but also for CA operators. Even if CA operators that
run monitoring do not log access from our RPs, they will be able to
investigate reachability issues.
ROA Beacons. We introduce ROA Beacons. Similar to BGP Bea-
cons [24] they change their configuration based on well-defined,
publicly available schedules to monitor propagation delays. We
operate two types of ROA Beacons, those that are published and
revoked periodically, and those that periodically alternate between
a different assignment of a prefix to origin ASs.

ROA Beacons serve multiple purposes in detail. External parties
can verify whether their RPs and routers maintain recent data. A
PP operator can check when RPs fetch the changes. In this paper,
we used ROA Beacons to verify ground truth (i.e., whether RPs
fetch updated data). Leveraging RPKI Beacons for complementary
measurement studies will be part of our future work.

On Measuring RPKI Relying Parties IMC ’20, October 27–29, 2020, Virtual Event, USA

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2020

Feb Mar Apr

Date [days]

200

400

600

800

1000

1200

RP
s [

di

st
in

ct
 IP

 a
dd

re
ss

es
]

AFRINIC
APNIC
Research PP
aggregate

(a) rsync

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2020

Feb Mar Apr

Date [days]

0

200

400

600

800

1000

1200

RP
s [

di

st
in

ct
 IP

 a
dd

re
ss

es
]

AFRINIC
APNIC
Research PP
aggregate

(b) RRDP

Figure 2: Synchronization activities from distinct RPs to fetch RPKI objects from monitored PPs via different protocols.

2.2 Establishing Ground Truth
We have run our CA/PP and ROA Beacon setup since 2018, while
we have had controlled RPs running since December 2019. Our RPs
were configured to use a combination of access methods and IP
protocols for our initial measurement framework validation. We
verified the clocks on each end of the connection. All had accurate
and consistent notions of time using NTP. Our RPs were topologi-
cally diverse and verified to consistently reach all PPs with latency
of at most 1 second. Using default RP software settings we verified
the expected synchronization refresh intervals shown in Table 1
with what we observed from the RPs to the PPs.

Having confirmed our visibility and the ability to accurately
detect interval frequency patterns, these directly observed vantage
points establish our ground truth and baseline. We can then fit RP
software default timers and observed interval patterns onto our
entire pool of PP access logs to fingerprint uncontrolled RP cache
servers and identify anomalous operating patterns.

3 RESULTS
In this section, we study the real-world access behavior of RPKI
RP deployments from our vertical and horizontal measurement
framework. We analyze insight from our own controlled PPs in the
delegation tree along with contributed data from two RIR-operated
PPs.1 This allows us to spot anomalies, identify trends, uncover
problems, and propose enhancements to improve the system.

3.1 Completeness of RPKI View
We first compare the synchronization patterns among RPs as seen
from different PPs to answer our initial question: Do RPs fetch data
from each and every PP?

Figure 2 depicts the global RP population over time by counting
distinct RP IPv4 or IPv6 addresses seen each day, distinguished by

1AFRINIC and APNIC PP access logs, not publicly available.

different PP and fetching protocols.2 The number of RPs is clearly
on the rise. rsync activities at our PP dropped once RRDP was
activated at the end of 2019, because modern RP software prefers
RRDP over rsync. RIR PPs, however, continue to see both protocols,
because the Trust Anchor Locator (TAL) specifies a rsync URI and
RPs are advised to use this URI to retrieve the object referenced at
every refresh interval [16]. This is why the AFRINIC PP did not see
a similar drop in rsync when it activated RRDP in March, 2020.

While the access patterns are congruent among PPs, each PP
sees different numbers of RPs, suggesting that not all RPs have a
complete set of RPKI repository data. Particularly noteworthy is
that our PP appears to see roughly 20% fewer RPs than the RIR
PP parents. Surprisingly, a consistent set of RPs appear unable or
unwilling to retrieve RPKI data from child PPs. We find over 80%
of the missing RPs are using rsync to the RIR PPs the same day.
We found that some RPs would eventually return to our child PP
on another day using RRDP, but access was often intermittent.
Furthermore, about 60% of these missing RPs have synchronization
interval patterns matching the RIPEv2 or RIPEv3 validator. A partial
explanation for this phenomenon is revealed in an access method
packet filter experiment we conducted and detailed in § 3.4.

3.2 Type of Networks Hosting RPs
There has been relatively little discussion or guidance provided
to operators on RP deployment strategies. The rpki-rtr specifi-
cation [8] suggests three deployment models, where RPKI cache
data is maintained: (i) by an upstream provider or third party, (ii) in
one or more local cache systems, or (iii) throughout a distributed
set of cache systems within each major network region. Our own
experience and initial anecdotal evidence suggested that most oper-
ators setup one or two distinct RPs for their entire network, while
a small handful of operators implemented their own unique, and
often times complex, design strategies encompassing aspects of the
three basic deployment scenarios.
2There have been moments of transient data loss, but we don’t believe these affect
overall conclusions.

IMC ’20, October 27–29, 2020, Virtual Event, USA Kristoff, et al.

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2020

Feb Mar Apr

Date [days]

0

50

100

150

200

250

300

350

400

RP
s [

di

st
in

ct
 IP

 a
dd

re
ss

es
]

Cable/DSL/ISP
Content
Education/Research
Enterprise

NA
Non-Profit
Not Disclosed
NSP

Figure 3: RPs deployed over time by classification of origi-
nating network.

Figure 3 shows the location of RPs based on the self-reported net-
work classification as published in PeeringDB [27]. Recent upticks
in RP growth are driven by three sectors: Cable/DSL/ISP, Content,
and NSP (network service provider). Content networks have been
responsible for a noticeable rise in RPs led by Facebook, which went
from zero RPs in 2019 to nearly 70 in early 2020. While hosting
networks are commonly used for RPs, such as Linode and DigitalO-
cean with approximately 50 and 25 RPs respectively in 2020, most
networks appear to be deploying RPs within their own network
boundaries near where their routers would reside.

To gain a sense of RP deployment by network, we graph the
cumulative distribution function of distinct RP addresses per ASN
seen in the first four months of 2020 in Figure 4. Over extended
periods of time we found that the majority of RPs can be classified
as server-class systems with stable source IP addresses. On average,
80% of RPs IP addresses will return each month and approximately
10% of all RPs have rpki in the DNS hostname. Even the few cases
where RPs are not static server systems, this data provides a unique
window into the natural roving population of RPs.

We were not surprised to find hosting providers with dozens
of RPs over the course of monitoring period. A number of opera-
tors, researchers, or limited test RP installations appear on these
networks for a variety of reasons. However, the network with the
largest number of RPs, over 1000 distinct IP addresses, was a DNS
infrastructure service provider with an elaborate RP design and
deployment model. When we reached out to them to understand
why so many RPs originate from their network, they explained
that they deploy dozens of RPs throughout their network using a
container-based model. These containers are transient nodes, with
unstable addresses that may change frequently over short durations
as network conditions change.

We also observed access via relay nodes of the Tor onion overlay,
which not only obfuscates the IP address and location of the actual
RP but also leads to distinct RP IP addresses per PP. One reason for
this could be to conceal planned RPKI deployment, which we will
study in future work.

100 101 102 103

Relying Parties [# IP addresses per origin ASN]

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

Figure 4: The number of RPs seen per ASN in the first four
months of 2020.

3.3 Timeliness
Having considered the differences in access and view in the previ-
ous sections, we turn our attention on how current a RPKI view
RPs are seeing. We refer to this quality as timeliness, which is a
measure primarily derived from the configured refresh interval
(aka synchronization schedule) of an RP. An RP must balance a re-
fresh interval to ensure it obtains current data, but fetching too
aggressively may place unnecessary strain on the PP infrastructure
or waste RP cycles. The specifications are vague on RP refresh guid-
ance, but suggest local RPs be “synchronized with each other at
least every four to six hours.” [6] An active IETF Internet-Draft [9]
suggests rsync-based refresh intervals of once an hour and RRDP
polling intervals of no more than every ten minutes. In practice,
modern RP software defaults to one hour or less refresh intervals
(refer to Table 1).

We examine inter-arrival connection times from each RP address
to a PP in the wild. To avoid long term instability effects, we ran-
domly choose a representative sample day. Most stable RPs will
synchronize with a PP multiple times per day. Based on current
practices and common recommendations we set a lower bound of
20 syncs per day. We reason that this helps ensure we consider only
stable RP configurations and exclude short-lived, unstable RPs that
may be used for testing or lab environments. However, on average
up to 20% of RP IP addresses still fall below this threshold, which
is significant. This would suggest a sizable population of RPs are
lagging severely behind what is in the RPKI repository. Some RIRs
update their repository as often as every few minutes if there are
pending changes.

Our calculated interval from the minimum threshold connec-
tions are shown for all RIR PPs on March 4, 2020 and the year prior
on the same date, see Figures 5 and 6. We notice RRDP exhibits
reasonably predictable behavior compared to rsync, which varies
from PP to PP and can be quite noisy. We believe this is in part
due to the nature of rsync integration with RP software, which
is a system call with less predictable completion times when re-
fresh intervals tend to be longer using this access method. AFRINIC
rsync frequency intervals are roughly what we might expect, while
APNIC rsync seems to have peaks at unexpected intervals. When
we evaluate corresponding user-agent strings in RRDP from the
same IP addresses at APNIC, the majority of rsync clients at the
unmarked 5-minute interval appear to be from RIPEv3 installations.
We find no commonality of source IP address or origin AS among

On Measuring RPKI Relying Parties IMC ’20, October 27–29, 2020, Virtual Event, USA

2 10 20 60
RP refresh interval [minutes]

50

0

50

100

150

Bi
nn

ed
 R

Ps
 [#

 o
f d

ist
in

ct
 IP

 a
dd

re
ss

es
]

RIPEv3 (2min)

Routinator (10min)

OctoRPKI (20min)

FORT/cron (60min)

2019
2020

(a) rsync

2 10 20 60
RP refresh interval [minutes]

50

0

50

100

150

Bi
nn

ed
 R

Ps
 [#

 o
f d

ist
in

ct
 IP

 a
dd

re
ss

es
]

RIPEv3 (2min)

Routinator (10min)

OctoRPKI (20min)

FORT/cron (60min)

2020

(b) RRDP

Figure 5: Average connection interval at AFRINIC.

2 10 20 60
RP refresh interval [minutes]

50

0

50

100

150

Bi
nn

ed
 R

Ps
 [#

 o
f d

ist
in

ct
 IP

 a
dd

re
ss

es
]

RIPEv3 (2min)

Routinator (10min)

OctoRPKI (20min)

FORT/cron (60min)

2019
2020

(a) rsync

2 10 20 60
RP refresh interval [minutes]

50

0

50

100

150

Bi
nn

ed
 R

Ps
 [#

 o
f d

ist
in

ct
 IP

 a
dd

re
ss

es
]

RIPEv3 (2min)

Routinator (10min)

OctoRPKI (20min)

FORT/cron (60min)

2019
2020

(b) RRDP

Figure 6: Average connection interval at APNIC.

these RPs. We suspect, but cannot verify that there exists or used
to exist a build or common configuration for this software with
that frequency interval. The small rsync peaks at 15 minutes con-
sists primarily of rsync-only clients. Again we were unable to find
any source material documenting this refresh rate from existing
software.

In 2019, rsync was still the dominant access method used by
RPs. We found rsync frequency intervals to only partially track
modern RP software implementations with the implication that
a number of RPs are running earlier generations of RP code and
custom synchronization schedules.

When using RRDP, all well-known RP software implementations
set an identifying user agent string in the HTTP connection. Since
most RPs use a combination of RRDP and rsync, we leverage the
RP IP address history from our vertical and horizontal views across

a set of PPs. We are able to see RRDP fingerprints for roughly 95%
for all RPs that connect using rsync this way.

The remaining small number of RPs we are unable to fingerprint
by correlating RRDP user-agent strings from a corresponding IP
address are rsync-only clients. There is one well known current
implementation, rpki-client, and a couple of older ones (rcynic,
rpstir) that support only rsync through cron with a recommended
1-hour synchronization refresh interval by default. [11, 18, 29] As
as a result of our child PP configuration we discovered that all
rsync-fetching RPs to our PP will include a trailing slash (/) of
the replicated directory in the initial synchronization command
with the exception of rpki-client. Since rpki-client is the only
active implementation of an rsync-only RP this allows us to identify
nearly all RP clients. As of this writing (Summer 2020), our PP sees
approximately 40 distinct rpki-client RPs per day.

IMC ’20, October 27–29, 2020, Virtual Event, USA Kristoff, et al.

06
May
2020

1707 08 09 10 11 12 13 14 15 16

Date [hours]

0

200

400

600

800

RP
s [

di

st
in

ct
 IP

 a
dd

re
ss

es
]

RRDP
rsync

(a) Research Publication Point PP-a

06
May
2020

1707 08 09 10 11 12 13 14 15 16

Date [hours]

200

400

600

800

RP
s [

di

st
in

ct
 IP

 a
dd

re
ss

es
]

RRDP
rsync

(b) Research Publication Point PP-b

Figure 7: Impact of blocking synchronization protocols. OnPP-aRRDPwasfirst blocked onMay 8while rsyncwas still allowed,
then rsync was blocked on May 13 while RRDP was allowed, and on PP-b vice versa. rsync fall-back rarely happened.

3.4 Filtering Experiment
Operating our own PP server enables us to shed light on unexpected
RP behavior. When we evaluated the effect of disabling one of the
access methods, (i.e., the mandatory rsync vs. emerging RRDP) we
were surprised by what we uncovered.

Most RP software have configuration settings to handle transient
connection failures. PP operators can mitigate failures by deploying
multiple PP instances such as with the use of DNS round robin or
load balancing solutions. RPs will typically retry unreachable PPs
at every synchronization interval.

Most PPs provide service interfaces for RRDP (a HTTPS-based
service) as well as rsync (TCP port 873). On May 8, we blocked
access from any RP to the RRDP service on one child PP-a and
blocked rsync on a different child PP-b. On May 13, we swapped
the protocol blocking on each server. We expected RPs that were
using RRDP to fall back to rsync after a sufficient period of time.
This would comply with current specs [20]. Conversely, we did not
anticipate many RPs to migrate to RRDP from rsync; we assumed
those RPs probably do not yet support RRDP or have been manually
set to support only rsync. With our child CA we verified compli-
ance with technical specifications, i.e., how RPs would behave if
one of the two access protocols suddenly became unavailable. This
allows us to assess both robustness in general and potential transi-
tion scenarios in case rsync is deprecated. As shown in Figure 7,
many RPs do not use implementations that comply with current
specifications. The sudden decrease of RRDP sources at a on May
8 should show a corresponding rise in rsync when RPs discover
RRDP has failed. Likewise we would expect the same at b on May
13. However, most RP software accounting for nearly 90% of all RPs
do not fall back to rsync. For software popularity see Appendix C.

This experiment exposes a looming problem in RP behavior with
delegated PPs. For example, if provider A publishes the associated
ROA for an IPV4 /16, allocates a /19 from it to child B, and the child
CA has the ROA which is not fetched, B’s announcement for the
/19 will be judged invalid. Either through natural failure modes or
a targeted service interface attack, the loss of the RRDP service
interface on a child PP can lead to a loss of reachability for B’s /19
by any network operator using the RPKI for route validation. This

RP behavior anomaly led to a lively exchange on the IETF SIDROPS
working group mailing list [7].

4 CONCLUSION AND OUTLOOK
The RPKI is the rapidly growing foundation upon which improved
security of the Internet BGP routing system is being constructed.
In this paper, we presented a new reproducible RPKI measurement
framework that focuses on the relying party cache servers to high-
light their role in providing a complete and timely view of RPKI
data. Our child CA and publication point deployment model ushers
in the next stage in RPKI system understanding. Our initial results
show a significant portion of deployed RPs are not obtaining a com-
plete nor timely copy of RPKI data. Refresh intervals are crucial,
but we have also identified systemic behavior by multiple imple-
mentations that may cause them to lose access to child CAs and
PPs. Our study shows this problem may currently exist for up to
20% of deployed RPs. Considering that there is an increasing trend
of both deployment of child CAs and RPKI-based route filtering,
Internet routing may experience larger disturbances in the future
if the erroneous fetching behavior of RPs is not fixed.

Our approach allows for greater data transparency, enabling RP
connection data to be shared and made available to third parties.
We will run and extend our measurement platform in the future. We
plan to include child CAs and PPs under all RIRs. This is important,
because as we have seen some operators choose not to accept the
licensing agreement of one of the five RIRs in practice. Future work
will help us understand how widespread these decisions are.

We also seek to further examine RP cache servers directly, to
complement the completeness work started here. It is not enough
to know that an RP contacted a publication point, it is important to
also know what the outcome of the contact was. Are RPs adhering
to certificate expiration dates? Do RPs correctly validate all ROAs?
Are there ROAs that trigger different validation results across RP
deployments, perhaps due to policy or implementation differences?

Finally, we will investigate whether we can leverage this new
data source outside of the RPKI context such as extending IP hit
lists by RP addresses.
Artifacts. All artifacts are available on https://rp-study.rpki.net.

https://rp-study.rpki.net

On Measuring RPKI Relying Parties IMC ’20, October 27–29, 2020, Virtual Event, USA

ACKNOWLEDGMENTS
We would like to thank our shepherd kc claffy and the anonymous
reviewers for their valuable detailed feedback. We are indebted to
Stephen Kent for his detailed comments on an earlier version of this
paper. For insight into RP software behavior we greatly appreciate
the time and assistance provided by Pier Chiodi, Andrew Gallo,
Jason Murray, Michael Sinatra, and Job Snijders.

REFERENCES
[1] AMS-IX. 2020. AMS-IX Route Servers. https://www.ams-ix.net/ams/

documentation/ams-ix-route-servers.
[2] Alexander Azimov, Eugene Uskov, Randy Bush, Keyur Patel, Job Snijders, and

Russ Housley. 2020. A Profile for Autonomous System Provider Authorization.
Internet-Draft. Internet Engineering Task Force. https://datatracker.ietf .org/
doc/html/draft-ietf-sidrops-aspa-profile-03 Work in Progress.

[3] Alexander Azimov, Eugene Uskov, Randy Bush, Keyur Patel, Job Snijders, and
Russ Housley. 2020. Verification of AS_PATH Using the Resource Certificate Public
Key Infrastructure and Autonomous System Provider Authorization. Internet-Draft.
Internet Engineering Task Force. https://datatracker.ietf .org/doc/html/draft-
ietf-sidrops-aspa-verification-05 Work in Progress.

[4] The Telia Carrier Blog. 2020. Dropping RPKI Invalid Prefixes. Retrieved May
23, 2020 from https://blog.teliacarrier.com/2020/02/05/dropping-rpki-invalid-
prefixes/

[5] T. Bruijnzeels, O. Muravskiy, B. Weber, and R. Austein. 2017. The RPKI Repository
Delta Protocol (RRDP). RFC 8182. IETF.

[6] R. Bush. 2014. Origin Validation Operation Based on the Resource Public Key
Infrastructure (RPKI). RFC 7115. IETF.

[7] Randy Bush. 2020. Re: [Sidrops] nlnet rp and rsync. https://mailarchive.ietf .org/
arch/msg/sidrops/p5v0fGfagEDHXkhV_DjGRZ13L_o/

[8] R. Bush and R. Austein. 2017. The Resource Public Key Infrastructure (RPKI) to
Router Protocol, Version 1. RFC 8210. IETF.

[9] Randy Bush, Jay Borkenhagen, Tim Bruijnzeels, and Job Snijders. 2020. Timing
Parameters in the RPKI based Route Origin Validation Supply Chain. Internet-Draft.
Internet Engineering Task Force. https://tools.ietf .org/html/draft-ietf-sidrops-
rpki-rov-timing-00 Work in Progress.

[10] Cloudflare. 2019–2020. OctoRPKI. https://github.com/cloudflare/cfrpki
[11] Raytheon BBN Technologies Corporation. 2011-2017. rpstir. https://github.com/

bgpsecurity/rpstir
[12] Fiber Telecom AS41327. 2020. Peering Policy. https://www.fibertelecom.com/it/

peering-policy.php.
[13] W. George and S. Murphy. 2017. BGPsec Considerations for Autonomous System

(AS) Migration. RFC 8206. IETF.
[14] Yossi Gilad, Avichai Cohen, Amir Herzberg, Michael Schapira, and Haya Shulman.

2017. Are We There Yet? On RPKI’s Deployment and Security. In Proc. of NDSS.
ISOC.

[15] Sharon Goldberg. 2014. Why is It Taking So Long to Secure Internet Routing?
Commun. ACM 57, 10 (September 2014), 56–63.

[16] G. Huston, S. Weiler, G. Michaelson, and S. Kent. 2016. Resource Public Key
Infrastructure (RPKI) Trust Anchor Locator. RFC 7730. IETF.

[17] Daniele Iamartino, Cristel Pelsser, and Randy Bush. 2015. Measuring BGP route
origin registration validation. In Proc. of PAM (LNCS). Springer, Berlin, 28–40.

[18] Dragon Research Labs. 2006-2016. rcynic. https://github.com/dragonresearch/
rpki.net

[19] NLnet Labs. 2019–2020. Routinator 3000. https://www.nlnetlabs.nl/projects/
rpki/routinator/

[20] M. Lepinski and S. Kent. 2012. An Infrastructure to Support Secure Internet Routing.
RFC 6480. IETF.

[21] Martin J Levy. 2018. RPKI – The required cryptographic upgrade to BGP routing.
The Cloudflare Blog. Cloudflare, https://blog.cloudflare.com/rpki/.

[22] AusNOG mailing list archive. 2020. Telstra AS1221 RPKI Implementation.
Retrieved May 23, 2020 from http://lists.ausnog.net/pipermail/ausnog/2020-
February/043901.html

[23] NANOG mailing list archive. 2019. AT&T/as7018 now drops invalid prefixes
from peers. Retrieved May 23, 2020 from https://mailman.nanog.org/pipermail/
nanog/2019-February/099501.html

[24] Zhuoqing Mao, Randy Bush, Timothy Griffin, and Matthew Roughan. 2003. BGP
Beacons. In In Proceedings of the Internet Measurement Conference (Miami, Florida,
USA) (IMC 2003). Association of Computing Machinery, New York, NY, USA,
1–14. https://doi.org/10.1145/948205.948207

[25] RIPE NCC. 2011–2018. RIPE NCC Validator 2. https://github.com/RIPE-NCC/
rpki-validator

[26] RIPE NCC. 2019–2020. RIPE NCC Validator 3. https://www.ripe.net/manage-
ips-and-asns/resource-management/certification/tools-and-resources

[27] PeeringDB. 2019. The Interconnection Database. https://www.peeringdb.com/.

[28] FORT project. 2019–2020. FORT Validator. https://fortproject.net/validator
[29] OpenBSD Project. 2019–2020. rpki-client. https://www.rpki-client.org/
[30] Y. Rekhter, T. Li, and S. Hares. 2006. A Border Gateway Protocol 4 (BGP-4). RFC

4271. IETF.
[31] Andreas Reuter, Randy Bush, Italo Cunha, Ethan Katz-Bassett, Thomas C. Schmidt,

and Matthias Wahlisch. 2018. Towards a Rigorous Methodology for Measuring
Adoption of RPKI Route Validation and Filtering. ACM SIGCOMM Computer
Communications Review 48, 1 (April 2018), 19–27.

[32] K. Sriram, D. Montgomery, D. McPherson, E. Osterweil, and B. Dickson. 2016.
Problem Definition and Classification of BGP Route Leaks. RFC 7908. IETF.

[33] Cecilia Testart, Philipp Richter, Alistair King, Alberto Dainotti, and David Clark.
2020. To Filter or Not to Filter: Measuring the Benefits of Registering in the RPKI
Today. In Proc. of PAM (LNCS, Vol. 12048). Springer, Berlin Heidelberg, 71–87.

[34] Andrew Tridgell, Paul Mackerras, and Wayne Davison. 1998–2020. rsync. https:
//rsync.samba.org/

[35] NTT News & Video. 2020. NTT Improves Security of the Internet
with RPKI Origin Validation Deployment. Retrieved May 23, 2020
from https://www.gin.ntt.net/ntt-improves-security-of-the-internet-with-rpki-
origin-validation-deployment/

[36] Matthias Wählisch, Olaf Maennel, and Thomas C. Schmidt. 2012. Towards
Detecting BGP Route Hijacking Using the RPKI. SIGCOMM Comput. Commun.
Rev. 42, 4 (Aug. 2012), 103–104.

[37] Matthias Wählisch, Robert Schmidt, Thomas C. Schmidt, Olaf Maennel, Steve
Uhlig, and Gareth Tyson. 2015. RiPKI: The Tragic Story of RPKI Deployment in
the Web Ecosystem. In Proc. of 14th ACM Workshop on Hot Topics in Networks
(HotNets). ACM, New York, 11:1–11:7.

A ETHICAL CONSIDERATIONS
We release all data gathered at our delegated CAs on https://rp-
study.rpki.net. This will include IP addresses of the relying parties.
We do not consider this data privacy-sensitive as the RPKI is a
public repository.

B PUBLICATION POINTS IN MARCH 2020
RPKI publication point hosts DNS records

A (IPv4) AAAA (IPv6)

AFRINIC
rpki.afrinic.net ✓ ✓

APNIC
rpki.apnic.net ✓ ✓

rpki.rand.apnic.net ✓ ✓

rpki.cnnic.cn ✓ ✘

rpki-ca.idnic.net ✓ ✘

rpkica.twnic.tw ✓ ✘

rpki-repository.nic.ad.jp ✓ ✘

ARIN
rpki.arin.net ✓ ✓

rpki.admin.freerangecloud.com ✓ ✓

rpki.tools.westconnect.ca ✓ ✓

rpkica.mckay.com ✓ ✘

LACNIC
repository.lacnic.net ✓ ✓

rpki-repo.registro.br ✓ ✓

RIPE
rpki.ripe.net ✓ ✓

repository.rpki.rocks ✓ ✓

rpki.admin.freerangecloud.com ✓ ✓

rpki.qs.nu ✓ ✓

ca.rg.net ✓ ✘

rsync.rpki.nlnetlabs.nl ✓ ✘

krill.heficed.net ✓ ✘

https://www.ams-ix.net/ams/documentation/ams-ix-route-servers
https://www.ams-ix.net/ams/documentation/ams-ix-route-servers
https://datatracker.ietf.org/doc/html/draft-ietf-sidrops-aspa-profile-03
https://datatracker.ietf.org/doc/html/draft-ietf-sidrops-aspa-profile-03
https://datatracker.ietf.org/doc/html/draft-ietf-sidrops-aspa-verification-05
https://datatracker.ietf.org/doc/html/draft-ietf-sidrops-aspa-verification-05
https://blog.teliacarrier.com/2020/02/05/dropping-rpki-invalid-prefixes/
https://blog.teliacarrier.com/2020/02/05/dropping-rpki-invalid-prefixes/
https://mailarchive.ietf.org/arch/msg/sidrops/p5v0fGfagEDHXkhV_DjGRZ13L_o/
https://mailarchive.ietf.org/arch/msg/sidrops/p5v0fGfagEDHXkhV_DjGRZ13L_o/
https://tools.ietf.org/html/draft-ietf-sidrops-rpki-rov-timing-00
https://tools.ietf.org/html/draft-ietf-sidrops-rpki-rov-timing-00
https://github.com/cloudflare/cfrpki
https://github.com/bgpsecurity/rpstir
https://github.com/bgpsecurity/rpstir
https://www.fibertelecom.com/it/peering-policy.php
https://www.fibertelecom.com/it/peering-policy.php
https://github.com/dragonresearch/rpki.net
https://github.com/dragonresearch/rpki.net
https://www.nlnetlabs.nl/projects/rpki/routinator/
https://www.nlnetlabs.nl/projects/rpki/routinator/
https://blog.cloudflare.com/rpki/
http://lists.ausnog.net/pipermail/ausnog/2020-February/043901.html
http://lists.ausnog.net/pipermail/ausnog/2020-February/043901.html
https://mailman.nanog.org/pipermail/nanog/2019-February/099501.html
https://mailman.nanog.org/pipermail/nanog/2019-February/099501.html
https://doi.org/10.1145/948205.948207
https://github.com/RIPE-NCC/rpki-validator
https://github.com/RIPE-NCC/rpki-validator
https://www.ripe.net/manage-ips-and-asns/resource-management/certification/tools-and-resources
https://www.ripe.net/manage-ips-and-asns/resource-management/certification/tools-and-resources
https://www.peeringdb.com/
https://fortproject.net/validator
https://www.rpki-client.org/
https://rsync.samba.org/
https://rsync.samba.org/
https://www.gin.ntt.net/ntt-improves-security-of-the-internet-with-rpki-origin-validation-deployment/
https://www.gin.ntt.net/ntt-improves-security-of-the-internet-with-rpki-origin-validation-deployment/
https://rp-study.rpki.net
https://rp-study.rpki.net

IMC ’20, October 27–29, 2020, Virtual Event, USA Kristoff, et al.

C RP SOFTWARE POPULARITY
Figure 8 shows the number of distinct RP IP addresses that fetch data via
RRDP and are visible at our research PP. We map each RP to RP software
based on the user agent string in HTTP.

Apr Jul Oct Jan
2020

Apr

Date [days]

0

100

200

300

400

500

600

700

800

RP
s [

di

st
in

ct
 IP

 a
dd

re
ss

es
] FORT

OctoRPKI
Other
RIPEv2
RIPEv3
Routinator

Figure 8: RP software popularity. Note: Research PP re-
enabled RRDP on 2020-12-25.

D SET DIAGRAM OF RP IP ADDRESSES
Figure 9 shows the overlap of distinct RP IP addresses for a single day,
measured across all three PPs.

42 67192

29

79 20
1058

AFRINIC APNIC

research PP

Figure 9: Set diagram showing the overlap of RP IP addresses
seen across three PPs on March 30, 2020 (proportions not to
scale).

E CONNECTION INTERVALS
Figure 10 shows the refresh intervals of RPs measured at our research PP.
Details for AFRINIC and APNIC are presented in Section 3.3.

2 10 20 60
RP refresh interval [minutes]

50

0

50

100

150

Bi
nn

ed
 R

Ps
 [#

 o
f d

ist
in

ct
 IP

 a
dd

re
ss

es
]

RIPEv3 (2min)

Routinator (10min)

OctoRPKI (20min)

FORT/cron (60min)

2019
2020

(a) rsync

2 10 20 60
RP refresh interval [minutes]

50

0

50

100

150

Bi
nn

ed
 R

Ps
 [#

 o
f d

ist
in

ct
 IP

 a
dd

re
ss

es
]

RIPEv3 (2min)

Routinator (10min)

OctoRPKI (20min)

FORT/cron (60min)

2019
2020

(b) RRDP

Figure 10: Average connection interval at research PP.

	Abstract
	1 Introduction
	2 Measurement Framework
	2.1 Building Blocks
	2.2 Establishing Ground Truth

	3 Results
	3.1 Completeness of RPKI View
	3.2 Type of Networks Hosting RPs
	3.3 Timeliness
	3.4 Filtering Experiment

	4 Conclusion and Outlook
	Acknowledgments
	References
	A Ethical Considerations
	B Publication Points in March 2020
	C RP software popularity
	D Set Diagram of RP IP Addresses
	E Connection Intervals

