Introduction to DNSSEC

DNSSEC Tutorial
Objectives

• Understand DNSSEC terminology
• Understand the threat models that DNSSEC is intended to address
• Appreciate the benefits of DNSSEC to sensitive applications
• Understand some of the operational and legal implications of DNSSEC
DNS Refresher
DNS Overview

- What is the DNS?
- What applications depend on the stable and secure operation of the DNS?
- What are the implications of a failure in DNS operations?
As ISP
As DNS provider
As "friend"

DNS Architecture

Registry DB
primary
secondary

Registrars/Registrants

DNS Protocol
Provisioning

Cache server
As ISP
client
DNS Data Flow

- STUB resolver
- caching resolver (recursive)
- MASTER
- SLAVES

- Zone Transfer
- zone file (text, DB)
- dynamic updates
DNS Vulnerabilities
DNS Vulnerabilities

- STUB resolver
- caching resolver (recursive)
- MASTER
- SLAVES

ATTACK VECTORS:
- man in the middle
- cache poisoning
- modified data
- spoofing master (routing/DoS)
- spoofed updates
- corrupted data

Zone file (text, DB)
Dynamic updates
DNS Vulnerabilities

Registrars
Registrants

Registry DB

Inter-server communication

Server compromise

Cache Poisoning

Cache-Stub resolver communication

Provisioning
DNS Protocol
DNS Vulnerabilities

- Cache-poisoning
- DNS interception
- Confidentiality
- Reliability
- Integrity
- Reflection attacks

Which of these does DNSSEC address?
Example: Unauthorized mail scanning

Subject: tenure

Astrophysics Mail Server → Central Admin Mail Server

DNS

Where? There!
Example: Unauthorized mail scanning

Subject: tenure

Astrophysics Mail Server

Central Admin Mail Server

DNS

Bad Guy

Elsewhere
Reflection Attacks

• DNS servers can act as very efficient packet amplifiers
  • Use of UDP, small queries, large responses
  • DNSSEC makes DNS servers better packet amplifiers
    • Still lots of UDP, larger responses
Reliability

• In the grand scheme of things, DNSSEC does not help make your DNS more reliable

• in fact it makes the DNS more brittle, and makes it harder to maintain reliable service
Confidentiality

- DNSSEC does not address confidentiality of queries or responses
- anybody who can intercept a secure response can still see the details
- there is no encryption here
Integrity, Authenticity

- DNSSEC provides a mechanism for *data* published in the DNS to carry cryptographic signatures
- secure responses include signatures
- clients receiving a secure response can tell whether it is authentic
Benefits of DNSSEC
Why DNSSEC

• Good security is multi-layered
  – Multiple defense rings in physical secured systems
  – Multiple ‘layers’ in the networking world

• DNS infrastructure
  – Providing DNSSEC to raise the barrier for DNS based attacks
  – Provides a security ‘ring’ around many systems and applications
DNSSEC secondary benefits

- DNSSEC provides an “independent” trust path
  - The person administering “https” is most probably a different from person from the one that does “DNSSEC”
  - The chains of trust are most probably different
  - See acmqueue.org article: “Is Hierarchical Public-Key Certification the Next Target for Hackers?”
More benefits?

- With reasonable confidence perform opportunistic key exchanges
  - SSHFP and IPSECKEY Resource Records
- With DNSSEC one could use the DNS for a priori negotiation of security requirements.
  - “You can only access this service over a secure channel”
More benefits?

• DNS-based Authentication of Named Entities WG
  http://tools.ietf.org/wg/dane/

Objective:

Specify mechanisms and techniques that allow Internet applications to establish cryptographically secured communications by using information distributed through DNSSEC for discovering and authenticating public keys which are associated with a service located at a domain name.
Attacks against PKI

Attackers Obtain Valid Cert for Google Domains, Mozilla Moves to Revoke It

UPDATE: A certificate authority in the Netherlands issued a valid SSL wildcard certificate for Google to a third party in July, leading to concerns that attackers may have been using the certificate to route sensitive traffic through their own servers, capturing it and compromising user data in the process. The certificate was revoked by the CA, DigiNotar, after the problem came to light Monday and Mozilla and Microsoft both have removed DigiNotar from their lists of trusted root CAs.

The attack appears to have been targeting Gmail users specifically. Some users trying to reach the Gmail servers over HTTPS found that their traffic was being rerouted through servers that shouldn't have been part of the equation. On Monday afternoon, security researcher Moxie Marlinspike checked the signatures on the certificate for the suspicous server, which had been posted to Pastebin and elsewhere on the Web, and found that the certificate was in fact valid. The attack is especially problematic because the certificate is a wildcard cert, meaning it is valid for any of Google's domains that use SSL.

It's not clear who DigiNotar issued the certificate to at this point.
Attacks against PKI (cont.)

Microsoft Revokes Trust in Five DigiNotar Root Certs, Mozilla Drops Trust For Staat der Nederland Certs

The fallout from the DigiNotar compromise continued on Tuesday, as Microsoft said it has now revoked its trust of all five of the certificate authority's root certificates. The update that makes this change is being pushed out to users on all supported versions of Windows. The Microsoft update makes any certificate that has been issued by DigiNotar untrusted by Internet Explorer and other Windows applications. Any IE user who visits a site that presents a DigiNotar-issued certificate as proof of identity will get an error message telling them that the certificate isn't trusted. Microsoft's change applies to these root certificates from DigiNotar.
Benefits to End-Users

• Users who validate will not see answers from the DNS that fail validation

• might increase helpdesk load, but the alternative is infected computers, stolen bank details, etc

• Ongoing work to improve SSL security using DNSSEC-signed certificates

• IETF “dane” working group
Benefits to Content Providers

• Reduce the risk that your content is being intercepted by unknown third parties

• for end-users that validate, at least

• Demonstrate technical proficiency and security awareness
Three Slides about Cryptography
Cryptography

• Public Key Cryptography
• X.509, PGP, ssh, DNSSEC
• (Public, Private) Key Pairs
  • use the private key to sign data
  • use the public key to verify signature
Private Key

• The private key needs to be kept private and secure

• the degree of security depends on what the key is used for

• a compromised key means you can no longer expect people to trust signatures

• a signature from a compromised key is more dangerous than no signature at all
Public Key

• The public key needs to be widely-distributed

• It also needs to be accurate

• In DNSSEC, public keys are published as DNSKEY RRSets in the zone they are used to sign

• Trust anchors are published in the parent zone as DS RRSets
DNSSEC Protocol
DNS Considerations

• When using the DNS to distribute keys, we need to remember a few things
  • the DNS is widely-distributed
  • information does not update instantaneously
  • we need to think hard about TTLs and caches when constructing a suitable policy
Public Keys in the DNS

• In DNSSEC, we distribute public keys in the DNS itself
  • use the DNSKEY RRSet
  • supports different key sizes, cryptographic algorithms
RR Signing in DNSSEC

- Each Resource Record Set (RRSet) can carry zero or more signatures
- signatures appear in an RRSIG RRSet with the same owner name
- signatures have an inception and expiry time
- we need to re-sign regularly
Chain of Trust

• If we can trust the public key which corresponds to the private key that made a signature, we can trust a signature
• If we can trust a signature, we can trust the data that is signed
• How do we trust the public key?
Delegation Signer

• DS is the Delegation Signer Resource Record
• it carries a hash of a public key
• it is signed
• this is how we extend trust across delegations
Chain of Trust

Parent Zone
- DNSKEY
- RRSIG(DS)
- DS

Child Zone
- DNSKEY
- RRSIG(RRSet)
- RRSset
Chain of Trust

Root → ORG → ISOC.ORG
Root Anchor

- At some point a validator needs to install a trust anchor into its software
- root zone trust anchor
- http://www.iana.org/dnssec/
Two DNSKEY RRSets

• Common practice in 2010 is to use two different DNSKEY RRSets per zone
  • ZSK – Zone Signing Key
    • used to sign the data in the zone
  • KSK – Key Signing Key
    • used to sign the DNSKEY RRSet
ZSK

• Since we need to re-sign the zone regularly, the ZSK needs to be on-line

• The ZSK is the key that is used most often by validators, so we can make it smaller and save some CPU

• We can change the ZSK we are using regularly without involving others
KSK

• The KSK is the key that corresponds to the DS record in our parent zone

• We need to use the KSK to sign the ZSK, and then we can put it away in a safe place
  • no need to keep the KSK on-line

• changing the KSK involves talking to our parent (update DS record)
KSK and ZSK

Parent Zone
- DNSKEY (KSK)
- DNSKEY (ZSK)
- RRSIG (DNSKEY)
- RRSIG (DS)
- DS

Child Zone
- DNSKEY (KSK)
- DNSKEY (ZSK)
- RRSIG (DNSKEY)
- RRSIG (DS)
- RRSIG (RRSet)
- RRSet
DNS Transport

• Plain old DNS was optimised to work over UDP with small packets (512 bytes)
  • fall-back to TCP

• Modern DNS supports larger messages over UDP (EDNS0, RFC 2671)

• DNSSEC means larger DNS messages
  • beware of faulty assumptions in firewalls!

• Cisco PIXes and ASA can still cause problems with ”fixup”
Signing Things that Are Not There

• Verifiable deniability of existence
  • you can’t sign something that’s not there
  • use NSEC or NSEC3 records to cover the gaps
  • sign the NSEC and NSEC3 records
  • More on this later...
DNSSEC for ISPs
Validate

• The most effective step you can take to encourage DNSSEC uptake as an ISP is to validate responses

• DNSSEC-signed zones are fairly new, so expect this to cause some non-zero (but manageable) amount of helpdesk load

• Comcast is an example of a large ISP (in the US) who has taken this step
DNSSEC for Registries and Hosting Providers
Sign your Zones

• All the zones you serve can be signed
• think about key rollover
• think about key compromise scenarios, and what processes you will follow when you detect them
• think about how you can detect compromises, and monitor signatures
Key Management

• need to implement secure key storage, management procedures
• need to sign your zones
• registries need to accept DS records from users (how?)
• need to publish DS records to parents (how?)
NSEC and NSEC3

- If you’re signing a zone, you have to use one of these. Which one?
- Simple rule of thumb
  - if you are happy for anybody in the world to obtain a copy of your zone, and your zone is not very big, use NSEC
  - if you normally don’t allow (e.g.) zone transfers to random people, or if you have a large zone to sign, use NSEC3
Key Management

- DNSSEC has many parameters to consider, including:
  - key rollover schedule
  - signature duration
  - choosing appropriate TTL for the zone data
  - key size
- Those will be determined by your policy
- You must determine them for your own organisation, via a risk and operational assessment
- Don't blindly copy the policies of another orgs!
Key Management

• How do we keep the ZSK secure?
• How do we keep the KSK secure?
  • important questions
  • no simple answers here
  • requires risk analysis, consultation, maybe audit
  • again, a matter of policy
  • hybrid models possible
    • HSM for KSK, software for ZSK
Communication

• Communicate with your customers
  • explain benefits/risks of DNSSEC
• Communicate with end-users
  • demonstrate how to validate responses
• explain operational changes (firewalls, TCP, response sizes)
Legal Aspects
Legal Aspects

• Deployment of DNSSEC involves trust in procedures and policies
  • otherwise why trust signatures?
• DNSSEC Policy and Practice Statement (DPS)
  • a public attestation of procedures and policies
  • can be used as the basis for audits
Migration Strategies for Registries and DNS Hosting Companies
Migration

• For registries and hosting providers, DNSSEC can be deployed without radically changing your existing systems

• registries will need to deploy a means of publishing trust anchors as DS RRSets, however
Streamlined Operations

- Remember, DNSSEC makes you zones more brittle and fragile than they were before
- need to have excellent reliability in registry and DNS operations (verification of output, monitoring, etc...)
- need to have emergency procedures to update DS RRsSets in your zones
Resources
Open-Source Software

- NSD
  - http://www.nlnetlabs.nl/
- BIND9
  - http://www.isc.org/
- Unbound
  - http://www.unbound.net/
- OpenDNSSEC
  - http://www.opendnssec.org/
Mailing Lists

- dnssec-deployment mailing list
  - http://www.dnssec-deployment.org/
- dns-operations mailing list
  - http://www.dns-oarc.net/
- Ongoing protocol work
- IETF dnsop, dnsext working groups
Other ressources

• DNS visualization tool
  http://dnsviz.net

• DNSSEC AFRICA
  http://dnssec-africa.org
DPS

• http://tools.ietf.org/html/rfc6841
• DPS for the Root Zone KSK Operator
  • https://www.iana.org/dnssec/
• Also review published DPS documents from TLDs who have already deployed DNSSEC
DPS

• .SE's DNSSEC Practice Statement
  • www.iis.se/docs/se-dnssec-dps-eng.pdf

• .CL's DNSSEC Practice Statement
  • http://www.nic.cl/dnssec/en/dps.html

• .NET DNSSEC Practice Statement
  • http://www.verisigninc.com/assets/20100925-NET+DPS-FINAL.pdf
Deployment

• Root zone was signed in July 2010

• Many TLDs are currently signed
  • ARPA, BE, BG, BIZ, BR, CAT, CH, CL, CZ, DK, EDU, EU, FI, FR, GOV, INFO, KG, LI, LK, MUSEUM, NA, NL, NU, ORG, PM, PR, PT, RE, SE, TF, TH, TM, UK, US, UG, TZ, GN ...

• [http://stats.research.icann.org/dnssec/](http://stats.research.icann.org/dnssec/)
DNSSEC Adoption

www.ohmo.to/dnssec/maps

Seen today