Some fundamental security concerns...

Confidentiality - could someone else read my data?

Integrity - has my data been changed?

Authentication - is this who they claim to be?

Cryptography offers genuinely secure solutions to these problems. We'll look briefly at four main components.
Hashing
One-Way Encryption

Munging the document gives a short message digest (checksum). Not possible to go back from the digest to the original document.
Examples of Hash algorithms

MD5 - 128 bits of output

SHA1 - 160 bits

RIPEMD-160 - 160 bits

SHA256 - 256 bits
Properties of Cryptographic Hashes

• Running the same hash algorithm on the same document always gives the same result

• It is infeasible to modify the document whilst keeping the hash the same - or even to find any other document with the same hash

• Hence a powerful check of integrity

• Important: MD5 is now BROKEN!
 – all it takes is 3 days and 200 playstation3's *
 – SHA1 not yet, but has known weaknesses

* Google for "MD5 considered harmful today"
Symmetric Cipher

Private Key/Symmetric Ciphers

The same key is used to encrypt the document before sending and to decrypt it once it is received.
Examples of Symmetric Ciphers

DES - 56 bit key length

3DES - effective key length 112 bits

RC4 (Arcfour) - 128 bits

AES (Advanced Encryption Standard) - 128 to 256 bit key length

Blowfish - 128 bits, optimized for fast operation on 32-bit microprocessors
Properties of Symmetric Ciphers

- Provides confidentiality: infeasible to decrypt data without knowing the secret key K
- Provides integrity: a small change to the ciphertext will cause it to decrypt to garbage
- Provides authenticity: if I can decrypt the data with my key K, I know it must have been encrypted by someone who knows K
- Fast to encrypt and decrypt, suitable for large volumes of data
Attacks on Symmetric Ciphers

- Good ciphers resist attacks on the algorithm; brute-force attack is directly related to the key length.

- Current recommendation is a key length of 90+ bits, for data protection of 20 years.*

- Relies entirely on secrecy of the key. How can you distribute it securely to your peer without it being intercepted by an attacker?

- Use a hash to convert a passphrase into a value suitable for a key (passphrase easier to remember)

*See http://www.keylength.com/ for a collection of recommendations
4. Public key cipher

One key is used to encrypt the document, a different key is used to decrypt it.

This is a big deal!
Examples of Public Key Ciphers

RSA - named after the three inventors

ElGamal - was popular while RSA was patent-protected, forms basis of DSA

Elliptic Curve - newer, stronger, not widely used yet
Properties of Public Key Ciphers

The keys are mathematically related

- Easy to convert private key into public key
- Infeasible to convert public key into private key
- You can safely post your public key anywhere!!
 (That's why it's called "public")

Can provide confidentiality: encrypt with public key, decrypt with private key

Can provide authenticity: encrypt with private key, decrypt with public key
Example application: gpg

gpg lets you:

- generate a public/private key pair
- encrypt messages with any public key, and/or
- sign messages with your private key

Used for sending encrypted E-mail, verifying integrity of software packages, etc
Digital Signatures

Let's reverse the role of public and private keys. To create a digital signature on a document do:

- *Munge* a document.
- Encrypt the *message digest* with your private key.
- Send the document plus the encrypted message digest.
- On the other end munge the document *and* decrypt the encrypted message digest with the person's public key.
- If they match, the document is authenticated.
Digital Signatures cont.

Take a hash of the document and encrypt only that. An encrypted hash is called a "digital signature".
Another View
Use for authentication

If you have my public key, I can prove to you that I own the corresponding private key (without sending it to you)

My public key is therefore a form of identity

Similarly, you can prove your identity to me

Solves the man-in-the-middle problem, as long as we both know each other's public keys

If not, we can use a third party - a Certificate Authority - to confirm identity of key owner
And don't forget the human element